Math 474 - Homework \# 8 Continuous Distributions

1. Suppose that you know that X is a continuous random variable with probability density function given by

$$
f(x)=\left\{\begin{array}{cc}
0 & \text { if } x \leq 10 \\
\frac{10}{x^{2}} & \text { if } x>10
\end{array}\right.
$$

(a) Draw a picture of f.
(b) Show that indeed f is a probability density function.
(c) Calculate $P(1 \leq X \leq 5)$
(d) Calculate $P(-1 \leq X \leq 30)$
(e) Calculate $P(X>20)$
(f) Find the cumulative distribution function $F(t)$ of X.
(g) Draw a picture of F.
(h) Calculate $E[X]$
2. Suppose that you know that X is a continuous random variable with probability density function given by

$$
f(x)=\left\{\begin{array}{cc}
c\left(1-x^{2}\right) & \text { if }-1 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

where c is some real number.
(a) What does c have to be to make sure that f is a probability density function?
(b) Draw a picture of f.
(c) Calculate $P(X<0)$
(d) Calculate $P(-1 \leq X<1 / 2)$
(e) Calculate $P(-10 \leq X<1 / 2)$
(f) What is the cumulative distribution function $F(t)$ of X ?
(g) Draw a picture of F.
(h) Calculate $E[X]$
3. Let $\lambda>0$. Consider the exponential probability density function

$$
f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & \text { if } x \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Show that f is indeed a probability density function.
(b) Calculate $E[X]$
4. Suppose that you know that X is a continuous random variable with probability density function given by

$$
f(x)=\left\{\begin{array}{cc}
a+b x^{2} & \text { if } 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

If $E[X]=\frac{3}{5}$, find a and b.
5. You arrive at a bus stop at 10:00, knowing that the bus will arrive at some time uniformly distributed between 10:00 and 10:30.
(a) What is the probability that the bus will arrive between 10:05 and 10:11?
(b) What is the probability that you will have to wait longer than 10 minutes?
6. The time (in hours) required to repair a machine is an exponential random variable with parameter $\lambda=\frac{1}{2}$.
(a) Find the probability that it takes between 0-1 hour to repair.
(b) Find the probability that a repair time exceeds 2 hours.

